
An effective description of the roots of bivariates mod 𝑝𝑘 and the
related Igusa’s local zeta function

Sayak Chakrabarti
∗

CS, Columbia University

New York, USA

sayaksc@gmail.com

Nitin Saxena

CSE, IIT Kanpur

Kanpur, India

nitin@cse.iitk.ac.in

ABSTRACT

Finding roots of a bivariate polynomial 𝑓 (𝑥1, 𝑥2), over a prime field

F𝑝 , is a fundamental question with a long history and several prac-

tical algorithms are now known. Effective algorithms for describing

the roots modulo 𝑝𝑘 , 𝑘 ≥ 2, for any general bivariate polynomial,

were unknown until the present paper. The main obstruction is

lifting the singular F𝑝 roots to Z/𝑝𝑘Z. Such roots may be numerous

and behave unpredictably, i.e., they may or may not lift from Z/𝑝 𝑗Z
to Z/𝑝 𝑗+1Z.

We give the first algorithm to describe the roots of a bivari-

ate polynomial over Z/𝑝𝑘Z in a practical way. Notably, when the

degree of the polynomial is constant, our algorithm runs in deter-

ministic time which is polynomial in 𝑝 + 𝑘 . This is a significant

improvement over brute force, which would require exploring 𝑝2𝑘

possible values. Our method also gives the first efficient algorithms

for the following problems (which were also open): (1) efficiently

representing all the (possibly infinitely-many) 𝑝-adic roots, and

(2) computing the underlying Igusa’s local zeta function. We also

obtain a new, effective method to prove the rationality of this zeta

function.

CCS CONCEPTS

• Theory of computation→ Algebraic complexity theory; Prob-

lems, reductions and completeness; • Computing methodologies

→ Algebraic algorithms; Hybrid symbolic-numeric methods.

KEYWORDS

polynomial, prime-power, bivariate, p-adic, root-finding, root-counting,

deterministic, Igusa, zeta function, tree

ACM Reference Format:

Sayak Chakrabarti and Nitin Saxena. 2023. An effective description of the

roots of bivariates mod 𝑝𝑘 and the related Igusa’s local zeta function. In

International Symposium on Symbolic and Algebraic Computation 2023 (ISSAC

2023), July 24–27, 2023, Tromsø, Norway.ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3597066.3597115

∗
Part of this work appears in the author’s Master thesis at IIT Kanpur (e-link at [8]).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC 2023, July 24–27, 2023, Tromsø, Norway

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0039-2/23/07. . . $15.00

https://doi.org/10.1145/3597066.3597115

1 INTRODUCTION

Roots of polynomials in fields and rings have played an important

role in mathematics and computer science for decades, with appli-

cations in a variety of topics. The roots of univariate polynomials

modulo prime powers are relatively easy to find as we can find

the roots in finite fields using factorization [1, 2, 7, 40, 51], after

which we can efficiently lift the roots to modulo higher powers of

𝑝 using the recent developments from [3, 22, 49]. However, even

though we can factorize multivariate polynomials [35, 36], their

roots usually do not correspond to a factor. Eg. even the irreducible

polynomial 𝑦 −𝑥 has numerous roots! Such polynomials pose prob-

lems in root-finding as they have exponentially many roots in the

base/prime field itself, and we can not quickly guess which root

will lift to mod 𝑝2. In our paper, we resolve this issue by giving an

efficient algorithm to find roots modulo 𝑝𝑘 for any prime 𝑝 and 𝑘

(given in unary); assuming that the degree 𝑑 of the polynomial and

the number 𝑛 of the variables, are both small.

Prime field F𝑝 and 𝑝-adic integers Z𝑝 are unique factorization

domains, and polynomials (above them) behave in an expected

way. There are some algorithms to factorize polynomials in Z𝑝
[6, 14, 27]. However, the properties in rings of characteristic as

prime powers, which can be seen as a world between F𝑝 and Z𝑝 ,
are still a mystery to us. There has been extensive work in this since

the famousHensel’s lifting [30, 56, 57], where factors of polynomials

are lifted from F𝑝 to Z/𝑝𝑘Z. Several variants of Hensel’s lifting are

available in various topics in algebra & number theory; but they

fail when the polynomial does not factorize into coprime factors.

This, when interpreted in terms of roots, means that it is difficult

to lift singular roots. (Eg. 𝑓 = 𝑥3
1
− 𝑝𝑥2

2
, or 𝑓 = 𝑥3

1
− 𝑝 , modulo 𝑝2.

Here, it is unclear how to even test the existence of roots; as the only

F𝑝 -root here, 𝑥1 ≡ 0 mod 𝑝 , starts behaving unpredictably when

‘lifted’ mod𝑝2.) There have been partially successful attempts to

tackle this, and achieve factorization of univariate polynomials

mod 𝑝𝑘 [11, 22, 52, 55]. Factorization mod 𝑝𝑘 has only been solved

until 𝑘 ≤ 4. Due to this, we can not use factorization, in any way,

when finding roots mod 𝑝𝑘 . Furthermore, due to the availability

of ‘exponentially’ many factors, as well as roots, in these rings, its

(data) structure has been of interest in mathematics and computer

science. Eg. [17, 28, 46] analyze root-sets mod 𝑝𝑘 , while [12, 21, 23,

41, 50] count the number of roots for a given polynomial. However,

most of the works are restricted to univariate polynomials, as we

did not have practical algorithms to find even one root of bivariate

polynomials mod 𝑝𝑘 . This paper gives the first algorithm to find all

the roots of a bivariate degree-𝑑 polynomial, over Z/𝑝𝑘Z resp. Z𝑝 ,
efficiently (for small 𝑑 and varying 𝑝, 𝑘). Our proofs extend to 𝑛 ≥ 3

https://doi.org/10.1145/3597066.3597115
https://doi.org/10.1145/3597066.3597115

ISSAC 2023, July 24–27, 2023, Tromsø, Norway Chakrabarti and Saxena

in a natural way. However, due to the limited space we will only

discuss 𝑛 = 2.

Let us take a famous example as our algorithm’s special-case—

a hyperelliptic curve, given by the equation 𝑦2 + 𝑢 (𝑥)𝑦 + 𝑣 (𝑥) = 0.

Rational roots of (hyper)elliptic curves have been widely studied

with several papers in this area [25, 38, 43, 45, 47, 53, 54]. Our

algorithm can find all (Z/𝑝𝑘Z)-roots (resp. 𝑝-adic) of not only these,
but general curves (that may have singularities). Even a single

singular point forces us to explore its 𝑝𝑘−1 possible lifts.
Root finding and counting have interesting applications in com-

plexity theory too. We know that finding a solution to a system

of constant-degree polynomials in any ring is NP-complete. Our

algorithm solves a special case: where we want a common solution

of low-variate, low-degree polynomials. Furthermore, root count-

ing is a very hard problem. [24] showed that counting the number

of roots of a multivariate polynomial of degrees as small as 3 is

#P-complete, while [26] showed that modular root counting, over

F𝑞 , is NP-hard for prime modulus other than the characteristic of

the field. [59] also showed that the problem of computing Igusa’s

local zeta function is NP-complete even for 𝑝 = 𝑑 = 2 which can be

shown from the arithmetization of SAT.
There has been extensive work on computing related zeta func-

tions. [13, 29, 39, 42] compute the zeta function which encodes the

size of a variety in finite fields, in time polynomial in the character-

istic 𝑝 . Improving this, say to poly(log𝑝), is a central open question.
Our paper focuses on the regime of poly(𝑝)-time too, as the case

of prime-power seems harder than finite fields (for instance, it has

no known formulation of the famous Riemann Hypothesis).

In this paper, we are interested in another zeta function called

the Igusa’s local zeta function (Igusa’s LZF), used to encode the

number of roots of a polynomial modulo prime powers [32, 33].

[18] gave another proof for the rationality of this function. We give

an alternate, more constructive proof by computing the Poincaré se-

ries; which can be seen as a generating function for point-counting.

The Poincaré series for a polynomial 𝑓 and a prime 𝑝 is defined

as 𝑃𝑓 ,𝑝 (𝑡) :=
∑∞
𝑖=0 𝑁𝑖 (𝑓) · (𝑝−𝑛𝑡)𝑖 , where 𝑡 ∈ C, |𝑡 | < 1 and 𝑁𝑖 (𝑓)

refers to the number of roots of 𝑓 mod 𝑝𝑖 . Choosing 𝑡 = 𝑝−𝑠 , we
denote 𝑃𝑓 ,𝑝 (𝑝−𝑠) =

∑∞
𝑖=0 𝑁𝑖 (𝑓) · (𝑝−𝑛𝑝−𝑠)𝑖 . [34] showed a connec-

tion between Poincaré series and Igusa’s LZF.

Despite the rationality being proved, explicit computation of

this zeta function has remained a challenge. Root counting helps in

computing this using the Poincaré series [19, 23, 59], but has been

restricted to univariates. Giving the first algorithm, we compute

Igusa’s local-zeta function for bivariates; thus, giving a new proof of

its rationality as well.

Due to space constraints, some of the proofs of the intermediate

results, the methods for computing the Igusa’s local-zeta function

and the generalization to 𝑛-variates could not be included in this

draft. However, the full version is available at [10]. The algorithmic

techniques and proofs that have been omitted follow quite easily

from the sequence of ideas presented here.

1.1 Previous work

There have been several works on finding roots of polynomials in

rings. [49] gave an approach for finding roots of univariate polyno-

mials modulo prime-powers in randomized polynomial time, which

was greatly improved by [3, 48]. We are aware of only one work

studying roots of bivariate polynomials mod 𝑝𝑘 [50], where they

count the total number of roots if the given polynomial 𝑓 (𝑥,𝑦) can
be written as 𝑓1 (𝑥) + 𝑓2 (𝑦), i.e., variable ‘separated’. On the other

hand, our algorithm does not require such assumptions.

Roots modulo 𝑝𝑘 can be seen as an intermediate world between

roots in F𝑝 and roots in Z𝑝 . There have been papers to find roots of

system of polynomials in certain finite fields [5, 31, 37, 44]. However,

for finding Z𝑝 roots, certain upper bounds given by 𝑁 have been

shown in [4, 15] which state that the existence of a solution mod

𝑝𝑁 implies a Z𝑝 -root. Among the improved results, [15] showed

𝑁 ≤ (𝑛𝑑)𝑂 (𝑛3
2
𝑛)
. [23] showed 𝑁 ≤ 𝑑 (Δ + 1), where Δ is the

discriminant-valuation; but it is only for univariate polynomials.

We prove stronger structural results for the 𝑝-adic roots of bivariate

polynomials, as discussed in Section 5.

Clearly, the literature suggests that roots behave “nicely" in F𝑝

and Z𝑝 ; but the properties in Z/𝑝𝑘Z are quite different for ‘small’

𝑘 ≥ 2. [20, 58] have extensively explored the behavior of poly-

nomials in these intermediate rings. In our paper, we essentially

generalize the approach of [3] to non-trivially reduce root finding

modulo 𝑝𝑘 to the problem of solving a univariate multi-polynomial

system.

1.2 Our results: Find roots in Z/𝑝𝑘Z, Z𝑝 , and
compute the Poincaré series

Our results give a new constructive understanding of the roots

modulo 𝑝-power of bivariate systems. We use a new data-structure

in the form of a tree, to view these roots with increasing exponent

of the modulus. This tree data-structure, essentially, performs desin-

gularization of roots— segregating them until they are non-singular

—and lift to the required exponent of the prime.

Furthermore, we devise a new data-structure called representative

roots to represent the exponentially many (resp. infinitely many

𝑝-adic) roots compactly. Our main ideas come from 𝑛 = 2.

Theorem 1.1 (Bivariates). Given 𝑓 ∈ (Z/𝑝𝑘Z) [𝑥1, 𝑥2] of degree
𝑑 , we can decide if a root of 𝑓 (𝑥1, 𝑥2) exists, in deterministic poly((𝑘+
𝑑 + 𝑝)𝑑) time. If roots do exist, we can find and count all the roots

(outputting them in a compact data structure).

Based on Theorem 1.1, we give the following two corollaries,

both of which were open problems. In a way, we bridge the gap

between rings of the form Z/𝑝𝑘Z and Z𝑝 by giving better bounds

than existing works.

Corollary 1.2 (𝑝-adic). Given 𝑓 ∈ Z[𝑥1, 𝑥2] of degree 𝑑 and the

absolute value of its coefficients bounded above by𝑀 > 0, we can find

all the 𝑝-adic-roots of 𝑓 (in Z𝑝) in deterministic poly((log𝑀+𝑑+𝑝)𝑑)
time (i.e., output their 𝑘 digits in a compact data structure).

Corollary 1.3 (Local-zeta fn.). Given 𝑓 ∈ Z[𝑥1, 𝑥2] of degree
𝑑 and the absolute value of its coefficients bounded above by𝑀 > 0,

we can compute the Poincaré series 𝑃 (𝑡) =: 𝐴(𝑡)/𝐵(𝑡) associated with
𝑓 and a prime 𝑝 , in deterministic poly((log𝑀 + 𝑑 + 𝑝)𝑑) time.

The algorithm for computing 𝑝-adic roots, and the proof of Corol-

lary 1.2 is described in Section 5. Based on this proof and simple

power series computations similar to that of [23], we can com-

pute the Igusa’s zeta function for bivariates. This has been briefly

described in Section 6.

An effective description of the roots of bivariates mod 𝑝𝑘 ISSAC 2023, July 24–27, 2023, Tromsø, Norway

There are major dissimilarities between roots of univariate and

bivariate polynomials. However, 𝑛-variate polynomials, for ‘small’

𝑛 ≥ 2, behave in a similar manner in our proof. We defer 𝑛-variates

to the full version [10, Sec. 5.3], for the sake of simplicity. The

algorithm for 𝑛-variates is quite similar to that of bivariate root-

finding. Essentially, we reduce bivariate root finding to that of a

system of univariates; whereas, for 𝑛-variates (𝑛 ≥ 3), we reduce

the problem to (𝑛 − 1)-variate root-finding.
1.3 Difficulty of the problem

It is easy to lift a non-singular F𝑝 -root, i.e., root of 𝑓 mod 𝑝 at which

some first-order derivative of 𝑓 is nonzero, to any Z/𝑝𝑘Z (see The-
orem 2.1 and Corollary 2.3). In contrast, this paper is a significant

advancement in the case when F𝑝 -roots are singular. It can be

viewed as a reduction to non-singular roots, of a ‘higher’ dimension

variety: which gets created while using the process of lifting (eg. ex-

tend a root (𝑥1, 𝑥2) of 𝑓 mod 𝑝 𝑗 to mod 𝑝 𝑗+1 by perturbation). In

our method, the dependence on 𝑝 cannot be improved, as bivariates

can have Ω(𝑝) singular roots at each step of lifting.

Practicalities. Though our algorithm is slow for large degree

bivariates or large primes, it is the first idea that works, for small

degree 𝑑 and prime 𝑝 , much better than the brute-force algorithm.

Our general algorithm is doubly-exponential in 𝑛 (= number of

variables), but, unsurprisingly the complexity is expected to be

‘bad’ in 𝑛 as the problem of counting F2-roots (say, for a system
with 𝑑 = 2) is already NP-hard and even #P-hard [24, 26, 59].

1.4 Proof overview: Algorithms 1 & 2

Let us see the high-level idea in our main theorem, Theorem 1.1.

If (𝑎1, 𝑎2) is a root of 𝑓 (𝑥1, 𝑥2) mod 𝑝 , then we transform the

polynomial to another polynomial given by 𝑓 (𝑎1 + 𝑝𝑥1, 𝑎2 + 𝑝𝑥2).
In order to find F𝑝 -roots of this polynomial in the next step, we re-

move the ‘extra’ 𝑝-powers by dividing by 𝑝𝑣 ; where 𝑣 := 𝑣𝑝 (𝑓 (𝑎1 +
𝑝𝑥1, 𝑎2 + 𝑝𝑥2)) is the val-multiplicity and 𝑣𝑝 (·) is the 𝑝-valuation.
We define this step, of transforming the coordinates and subsequent

division by the 𝑝-power, as the lifting step or lifting of roots. The

polynomial will be modified at each step such that its F𝑝 -root re-

turns a coordinate of the final (𝑝-adic resp. Z/𝑝𝑘Z) root. Notice that
if (𝑎1, 𝑎2) is an F𝑝 -root of 𝑓 (𝑥1, 𝑥2), and after lifting, the polynomial

becomes
˜𝑓 (𝑥1, 𝑥2) := 𝑝−𝑣 𝑓 (𝑎1+𝑝𝑥1, 𝑎2+𝑝𝑥2) which has an F𝑝 -root

(𝑏1, 𝑏2), then (𝑎1+𝑝𝑏1, 𝑎2+𝑝𝑏2) is a root of 𝑓 (𝑥1, 𝑥2) mod 𝑝𝑣+1. The
univariate case of this lifting technique was developed in [3, 21].

However, it might happen that root (𝑎1, 𝑎2) in the lifting process

does not lift to higher powers of 𝑝 ; but some other root does lift, as

illustrated by the following example.

Example 1.4. Consider 𝑓 (𝑥1, 𝑥2) := 𝑥3
1
− 𝑥3

2
+ 3𝑥2 − 3𝑥1 + 5

and 𝑝 := 5. (1, 1) and (2, 2) are its F𝑝 -roots. Starting with the root

(1, 1), the process of lifting given by the transformation (𝑥1, 𝑥2) ↦→
(1+5𝑥1, 1+5𝑥2) and division by 5, yields the polynomial 25𝑥3

1
−25𝑥3

2
+

15𝑥2
1
− 15𝑥2

2
+ 1 which does not have F5-roots. Although, restarting

with the root as (2, 2) yields the polynomial 25𝑥3
1
− 25𝑥3

2
+ 30𝑥2

1
−

30𝑥2
2
+ 9𝑥1 − 9𝑥2 + 1 after lifting. (1, 0) is now its F5-root!

Thus, we iteratively loop over all the possible roots at each step,

by fixing one variable, say 𝑥1, with 𝑝-many possibilities, and finding

the possible 𝑑-many (or 𝑝-many) values of 𝑥2.

Val-multiplicity vs valuation. For a polynomial 𝑓 (x), we de-
fine the effective polynomial as (𝑓 mod 𝑝), where the coefficients are

in F𝑝 (we can assume 𝑓 mod 𝑝 is non-constant). Similarly, the effec-

tive degree 𝑑1 of 𝑓 (x) is the degree of (𝑓 mod 𝑝), while 𝑑 ≥ 𝑑1 ≥ 1

will be the total degree of 𝑓 .

We define a local root of 𝑓 (x) as a root of the effective polynomial.

For a local root a ∈ F2𝑝 , local valuation is defined as 𝑣𝑝 (𝑓 (a)) .
Recall: val-multiplicity of local root is defined as 𝑣𝑝 (𝑓 (a + 𝑝x)),
i.e., the minimum valuation of the coefficients of the polynomial

thus formed; we sometimes shorten it to val-mult(a). Obviously,
val-multiplicity is at most the local valuation.

Idea of Algorithm 1: Branching by val-multiplicities. As

we have seen in Example 1.4, different F𝑝 roots in steps of lifting

can give rise to different val-multiplicities. Thus, we will view the

algorithm as finding roots along a search tree (Fig.1). Note that there

are at most 𝑑𝑝 local roots of 𝑓 in F2𝑝 .

The nodes of the tree contain the polynomials whose roots we

are interested in finding from that point on. The branches arising

from a node correspond to each local root a ∈ F2𝑝 . The children of

this node will be the polynomials obtained from lifting by the local

root in accordance to the branch, given by 𝑓𝑗+1 (x) := 𝑝−𝑣 𝑓𝑗 (a+𝑝x);
where 𝑣 := val-mult(a).

At depth 𝑗 of the tree, the node contains the polynomial 𝑓𝑗 (x)
that has been obtained by performing lifting 𝑗 times on the orig-

inal polynomial 𝑓 (x) using a contiguous sequence of local roots.

Suppose we are at a node with 𝑓𝑗 (x) over Z/𝑝𝑘 𝑗Z, and consider the
lifting according to root awith val-multiplicity 𝑣 𝑗 := 𝑣𝑝 (𝑓𝑗 (a+𝑝x)).
The child of this node is 𝑓𝑗+1 (x) := 𝑝−𝑣𝑗 𝑓𝑗 (a + 𝑝x), and we are

interested in its roots over the ring Z/𝑝 (𝑘 𝑗−𝑣𝑗)Z. Thus, our target
prime power reduces as we traverse down in the tree.

Theorem 2.1-(1) shows that the effective degree of the newly

lifted polynomial will be at most the val-multiplicity of the local

root considered, which in turn is ≤ 𝑑1 (= old effective degree). So,

if val-multiplicity is < 𝑑1, then the new effective degree reduces

after lifting. Our algorithm’s hard case is when a local root (𝑎1, 𝑎2)
has val-multiplicity 𝑑1 (i.e., maximum possible). Then, the effective

polynomial can be written as a “𝑑1-form”, which is in the ideal

⟨𝑥1 − 𝑎1, 𝑥2 − 𝑎2⟩𝑑1 ⊆ F𝑝 [x] (Lemma 3.1). Next, we branch into a

special val-multiplicity = 𝑑1 part of the search tree, which requires

a more complicated version of ‘lifting steps’ as we shall see.

To summarize, the degree reduction case of local root is where

effective degree reduces (𝑣 < 𝑑1 suffices, due to Theorem 2.1); while

val-multiplicity 𝑑1 case is where val-mult 𝑣 = 𝑑1.

Naively, the depth of this search tree can be Ω(𝑘), as very few

lifting steps may have degree reduction. Our second big idea is a

way to overcome this basic obstruction (Algorithm 2).

At any given node, we consider the ‘chains’ that are responsible

for the contiguous val-multiplicity 𝑑1 branches. We store them in

an array (𝐷 in Algo.1). This is done in the red part of the tree in

Fig.1. After this is done, the search tree branches into the easier

degree-reduction cases (branches with val-mult.< 𝑑1); which is

denoted by the green nodes (enclosed by the left rectangle in Fig.1).

So, in the tree, the lifting can either arise simply from the degree

reduction cases, or can be a more complicated one where we trans-

form the polynomial in Algorithm 2 after which we are guaranteed

to branch into a degree reduction case.

ISSAC 2023, July 24–27, 2023, Tromsø, Norway Chakrabarti and Saxena

.

root = 𝑎1

val-mult< 𝑑1

val-mult< 𝑑1

root = 𝑎𝑡

val-mult= 𝑑1

root = 𝑏

𝑝−(𝑖𝑑1+𝑣′) 𝑓
(
𝑏 + 𝑝𝑖𝑎′

1
+ 𝑝𝑖+1𝑥

)

root = 𝑎′
1

𝑝−𝑣 𝑓 (𝑎1 + 𝑝𝑥)

val-mult< 𝑑 ′
1
< 𝑑1

𝑖 lifts

Figure 1: Branching along the search tree.

This has been schematically portrayed in Figure 1, where the red

node is a more complicated transformation than the simple lifting

of a local root (done in green node).

Tree depth and fanin. The crux of Algorithm 1 lies in our

Theorem 2.1 which states that optimistically the effective degree

reduces “most of the time". The algorithm ends when we either

have exhausted the power of 𝑝 , denoted by 𝑘 , or when the effective

degree becomes 1. The latter case (Theorem 2.1) gives a root and is

essentially (𝑝-adic) Hensel lifting on a linear polynomial [30].

Algorithm 1 ensures that the tree-depth is 𝑂 (𝑑), while the more

complicated Algorithm 2 ensures that the number of branches at

every node is 𝑂 (𝑘2𝑑𝑝).
Hensel’s Lifting. Given a non-singular root a of polynomial

ℎ(x), we can lift it to modulo any 𝑝-power (like in Theorem 2.1-(2)),

using a variant of 𝑝-adic Hensel’s lifting [30]. Since a is a non-

singular root, at least one of the first-order derivatives of ℎ(x) will
not vanish. Corollary 2.3 implies that the val-multiplicity is then ex-

actly 1, and in the next step of lifting, the effective polynomial will

be linear. If this linear polynomial is of the form𝑚1𝑥1 +𝑚2𝑥2 +𝑚0,

then (say) we can fix 𝑥1 to any value in [𝑝] and find the corre-

sponding unique value of 𝑥2 to yield a root by simple lifting. For

the next 𝑝-adic coordinate, after lifting, these𝑚1,𝑚2 (coefficients

of 𝑥1 resp. 𝑥2) will not change; while𝑚0 might change. Thus, from

Theorem 2.1-(2), we have the fact that the effective polynomial

continues to stay linear, and we can fix the current-coordinate 𝑥1 to

find the corresponding 𝑥2 every time; enabling us to lift to modulo

any 𝑝-power (for arbitrary fixing of 𝑥1 in this example).

Idea of Algorithm 2: Chain of 𝑑1-forms. We create a process

of ‘removing’ (or combining) contiguous val-multiplicity 𝑑1 lifts,

instead of brute-forcing over them in the search tree. This removal-

process is guided by something called 𝑑1-forms (Lemma 3.1), and

will be subdivided into single and multiple val-multiplicity 𝑑1 roots.

(1) When multiple val-multiplicity roots exist, we show in Lemma

3.2 that the polynomial has a special form (namely 𝑑1-power). We

traverse these cases in a contiguous way. (2) Next we traverse over

cases where val-multiplicity 𝑑1 root is unique. At the end, we en-

counter lesser val-multiplicity roots and we can recursively call

the root-finding algorithm. Overall, we find the lengths of these

contiguous traversals, as well as the possibilities of the underlying

𝑑1-powers resp. 𝑑1-nonpowers. This is discussed in the latter-half

of Section 3, by considering a dynamic basis-change on the vari-

ables x, that guides the search for local roots well. In this process

we reduce the root-finding of bivariate polynomials to that of a

system of univariate polynomials, and employ the idea of [3] to

find representative-roots of a univariate polynomial system. Finally,

see Step 15 (Algorithm 1) for the consolidated transformation that

we call contiguous chain of val-multiplicity 𝑑1 lifts.

To summarize, in this case of successive val-mult=𝑑1 lifts, we show

that the contiguous chains are few (i.e., polynomial in 𝑘, 𝑑, 𝑝), and

every branch appearing from these chains ends in a degree reduction

case. This is depicted in the search tree (Fig.1) as a red node; it

‘jumps’ over all the val-mult=𝑑1 cases (Sections 3–4) before branch-

ing to the green nodes. This bounds the tree-depth to 2𝑑 .

Stopping condition, representative roots and root-counting.

The algorithm terminates when either a root gets completely spec-

ified mod 𝑝𝑘 , or when effective degree ≤ 1 (any of its roots can

be Hensel lifted all the way to our required power of 𝑝), or when

no root exists. In the third case, the root-set returned is just the

emptyset 𝜙 , while in the first case it is a singleton.

For the second case, roots will be returned in terms of repre-

sentative roots. Eg. when the lifted polynomial is zero modulo 𝑝ℓ ,

any value in Z/𝑝ℓZ is a root, and thus we return ∗1 resp. ∗2 for the
coordinates 𝑥1 resp. 𝑥2, which represent the entire Z/𝑝ℓZ. The roots
returned will be (∗1, ∗2), with the number of possibilities being 𝑝2ℓ .

This will be termed as our usual representative root.

When the effective degree is 1— as we sketched before, we can fix

one variable, say 𝑥1, as a local root and find the value of 𝑥2 (in each

𝑝-adic coordinate one by one). Even if only one variable is present in

the linear form, say 𝑥2, the other variable 𝑥1 will still be free; so, for

any given value of 𝑥1, denoted by ∗, we can find the corresponding

values of the local roots of 𝑥2, thus, yielding a root of the polynomial

modulo 𝑝ℓ . Let us denote this function for determining 𝑥2 from any

value of 𝑥1 by 𝑐 (·), which simply finds each coordinate of 𝑥2 using

Hensel’s lifting. Thus, the output can be denoted as (∗, 𝑐 (∗)). The
number of roots represented in this expression is 𝑝ℓ . This type of

representative root will be termed as linear-representative. (Note:

In the presence of an offset, eg. (𝑟1 + 𝑝ℓ1∗, 𝑟2 + 𝑝ℓ2𝜇 (∗)), this case
can contribute more roots, so a more careful calculation is done in

Section 6.)

2 EVOLUTION OF EFFECTIVE DEGREE

DURING LIFTING STEPS

In this section, we analyze the effective degree at each step and

look more closely as to when this decreases, or remains the same,

by looking at the val-multiplicity of the local root during lifting.

The proof idea is to analyze the monomials in terms of 𝑥1 and

𝑥2, and see how they behave after the transformation (𝑥1, 𝑥2) ↦→
(𝑎1 + 𝑝𝑥1, 𝑎2 + 𝑝𝑥2) followed by division by appropriate power of

𝑝 . This can be summed up by the following theorem.

Theorem 2.1 (Degree reduction). For a polynomial 𝑓 (𝑥1, 𝑥2) ∈
(Z/𝑝𝑘Z) [𝑥1, 𝑥2], given an F2𝑝 -root (𝑎1, 𝑎2) of 𝑓 (𝑥1, 𝑥2), let us denote
𝑔(𝑥1, 𝑥2) := 𝑝−𝑣 𝑓 (𝑎1+𝑝𝑥1, 𝑎2+𝑝𝑥2), where 𝑣 := 𝑣𝑝 (𝑓 (𝑎1+𝑝𝑥1, 𝑎2+
𝑝𝑥2)). Let the previous effective degree be𝑑1 := deg(𝑓 (𝑥1, 𝑥2) mod 𝑝)

An effective description of the roots of bivariates mod 𝑝𝑘 ISSAC 2023, July 24–27, 2023, Tromsø, Norway

and current effective degree be 𝑑2 := deg(𝑔(𝑥1, 𝑥2) mod 𝑝). Then the

following holds:

(1) If 𝑑1 > 1, then 𝑑2 ≤ 𝑣 ≤ 𝑑1. (So, 𝑑2 = 𝑑1 only if 𝑣 = 𝑑1.)

(2) If 𝑑1 = 1, then 𝑑2 = 1.

Example 2.2. Let us see how the effective degree could reduce.

Consider 𝑓 (𝑥1, 𝑥2) = 𝑥2
1
+ 𝑥3

2
mod 𝑝 . This has degree 𝑑1 = 3. Clearly,

(0, 0) is its root modulo 𝑝 . So, apply the transformation (𝑥1, 𝑥2) ↦→
(0 + 𝑝𝑥1, 0 + 𝑝𝑥2), to get 𝑔(𝑥1, 𝑥2) := 𝑝−2 𝑓 (𝑝𝑥1, 𝑝𝑥2) = 𝑥2

1
+ 𝑝𝑥3

2
,

which has effective degree 𝑑2 = 2 = 𝑣 < 𝑑1.

The proof of Theorem 2.1 relies on analyzing the partial deriva-

tives in Taylor’s expansion. Using this technique, we get a corollary

on partial derivatives of 𝑓 (x), which motivates the inclusion of the

term ‘multiplicity’ in our new concept of ‘val-multiplicity’.

Corollary 2.3. Local root a of 𝑓 (x) has val-multiplicity ≥ 𝑣 , if

and only if 𝑝𝑣−|i | | 𝜕xi 𝑓 (a)i! , for all orders |i| < 𝑣 .

Using Theorem 2.1, we get the idea of effective degree reduction.

If root (𝑎1, 𝑎2) ∈ F2𝑝 is such that 𝑓 (𝑎1 + 𝑝𝑥1, 𝑎2 + 𝑝𝑥2) . 0 mod 𝑝𝑑1 ,

then we can repeat the appropriate transformation (𝑥1, 𝑥2) ↦→
(𝑎1 + 𝑝𝑥1, 𝑎2 + 𝑝𝑥2), until the effective degree reduces to 1. Once

this happens, we have a compact description of all its roots by Hensel

lifting, as we can arbitrarily fix one variable and uniquely find the

𝑝-adic value of the other variable.

However, the problem arises when the root (𝑎1, 𝑎2) is such that

𝑓 (𝑎1 + 𝑝𝑥1, 𝑎2 + 𝑝𝑥2) ≡ 0 mod 𝑝𝑑1 . In this case, the degree may not

reduce, and we might need to lift 𝑘/𝑑1 many times. This is compu-

tationally infeasible, the search-tree becomes very deep/large, and

takes time exponential in 𝑘/𝑑1. We tackle this case next.

3 STRUCTURE OF 𝐹 VIA RANK OF LOCAL

ROOTS OF VAL-MULT=𝐷1

We need to handle the challenge of our local root a of 𝑓 having

val-multiplicity 𝑣 = 𝑑1. Here, the effective degree may not reduce

in the next step. We first show the structure of such 𝑓 (𝑥1, 𝑥2).

Lemma 3.1 (𝑑1-form at a). If a ∈ F2𝑝 is a root of 𝑓 (x) mod 𝑝 such

that 𝑓 (𝑎1 + 𝑝𝑥1, 𝑎2 + 𝑝𝑥2) ≡ 0 mod 𝑝𝑑1 , where 𝑑1 is the effective

degree of 𝑓 , then 𝑓 (x) is in the ideal ⟨𝑥1 − 𝑎1, 𝑥2 − 𝑎2⟩𝑑1 ⊂ F𝑝 [x].

In Lemma 3.1’s situation, if a is unique, then using the struc-

ture of 𝑓 we can easily find the root (eg. a simple search in F2𝑝),

and lift without getting into multiple val-mult=𝑑1 branching. A

serious obstruction arises when there are several local roots a of
val-multiplicity = 𝑑1. We will now show the extra special structure

of such an 𝑓 (𝑥1, 𝑥2).
Without loss of generality, let 0 be a local root of val-multiplicity

= 𝑑1. This means that 𝑓 ∈ ⟨𝑥1, 𝑥2⟩𝑑1 . If another local root a ≠ 0
exists with val-multiplicity = 𝑑1, then we also have 𝑓 (x) ∈ ⟨𝑥1 −
𝑎1, 𝑥2 − 𝑎2⟩𝑑1 . So, 𝑓 ∈ ⟨𝑥1, 𝑥2⟩𝑑1 ∩ ⟨𝑥1 − 𝑎1, 𝑥2 − 𝑎2⟩𝑑1 ⊂ F𝑝 [x].
Then, we show 𝑓 to be a perfect-power!

Lemma 3.2 (Two val-mult=𝑑1 roots). For a polynomial 𝑓 ∈
F𝑝 [𝑥1, 𝑥2] of degree 𝑑1, if 𝑓 is in the ideal ⟨𝑥1, 𝑥2⟩𝑑1 ∩ ⟨𝑥1 − 𝑎1, 𝑥2 −
𝑎2⟩𝑑1 , for some a ≠ 0 ∈ F2𝑝 , then we have 𝑓 ≡ 𝑐 · (𝑎2𝑥1−𝑎1𝑥2)𝑑1 mod

𝑝 , where 𝑐 ∈ F∗𝑝 .

Essentially, this means 𝑓 is 𝑑1-th power of a linear polynomial

iff rank of the val-mult=𝑑1 roots is two (i.e., multiple such roots).

In the case of unique val-mult=𝑑1 root we will call the polynomial

𝑑1-nonpower-form, while that for multiple val-mult=𝑑1 roots, we

call the polynomial 𝑑1-power.

Branching in 𝑑1-nonpower-form. In this case, find the unique

val-multiplicity 𝑑1 root, and do the lifting step. There is no branch-

ing required.

Branching in𝑑1-power.Without loss of generality, the effective

polynomial will be of the form (𝑎2𝑥1−𝑎1𝑥2)𝑑1 . So, there are 𝑝 roots

(of val-mult=𝑑1), namely, (𝑎1𝑡, 𝑎2𝑡) for any 𝑡 ∈ F𝑝 . This leads to
branching, which we will avoid by inventing a different strategy.

The first observation (Lemma 3.3) is that 𝑑1-nonpower-form can

not lead to a𝑑1-power. Thus, we deduce that whenever a contiguous

chain of𝑑1-power lifting ends, then every𝑑1-form in the subsequent

contiguous lifting steps is a 𝑑1-nonpower-form.

Lemma 3.3 (Nonpower to power?). If 𝑓 is a 𝑑1-nonpower-form

having a single val-mult=𝑑1 root a, then its lift 𝑝−𝑑1 𝑓 (a + 𝑝x) is not
a 𝑑1-power.

So we mainly need to study the case: A 𝑑1-power, say 𝐿𝑑1 , is

followed by another 𝑑1-power, say 𝐿′𝑑1 , in the next lifting step.

Next, we unearth the structure that goes in the formation of 𝐿′

after lifting the polynomial 𝐿𝑑1 + ⟨𝑝⟩. This gives us the optimized

bound on the branching of the red-nodes of the tree.

3.1 Structure of consecutive 𝑑1-powers.

For a 𝑑1-form, the effective polynomial 𝑓 (𝑥1, 𝑥2) mod 𝑝 will be of

the form 𝐿𝑑1 , for some linear polynomial 𝐿 (eg. 𝑥1 +𝑥2 +1). Without

loss of generality, assume {𝐿, 𝑥2, 1} to be of rank=3 (over F𝑝). Let
us rewrite 𝑓 in the basis {𝐿, 𝑥2}, instead of {𝑥1, 𝑥2}, denoted by

˜𝑓 (𝐿, 𝑥2) (= 𝑓 (x)). Since it is an invertible linear transformation, it

now suffices to find roots of

˜𝑓 =: 𝐿𝑑1 +𝑝 ·𝐿𝑑1−1 ·𝑢1 (𝑥2)+𝑝 ·𝐿𝑑1−2 ·𝑢2 (𝑥2)+· · ·+𝑝 ·𝑢𝑑1 (𝑥2) . (1)
Lift 𝑑1-power to 𝑑1-power. Suppose that after lifting given by

𝑝−𝑑1 ˜𝑓 (𝑝𝐿, 𝑥2), the effective polynomial is again a 𝑑1-power; then

it has to be the case that

𝐿𝑑1 + 𝐿𝑑1−1 · 𝑢1 (𝑥2) + 𝐿𝑑1−2 · 𝑢2 (𝑥2)/𝑝 + · · · + 𝑢𝑑1 (𝑥2)/𝑝
𝑑1−1

≡ (𝐿 + 𝑢1 (𝑥2)/𝑑1)𝑑1 mod 𝑝 ,
(2)

for some univariate polynomials 𝑢 𝑗 ’s, such that Equation 2 is a per-

fect power of the linear polynomial 𝐿 + 𝑢1 (𝑥2)/𝑑1. Consequently,
those local roots 𝑎2 for which the above system is satisfied, trans-

form the previous ‘root’ 𝐿 to 𝑝 (𝐿 + 𝑢1 (𝑎2)/𝑑1) in this lifting step.

Expanding the RHS, we also obtain equations, for 𝑗 ∈ [𝑑1], as

𝑢 𝑗 (𝑥2) ≡ 𝑝 𝑗−1
(
𝑑1

𝑗

)
· (𝑢1 (𝑥2)/𝑑1) 𝑗 mod 𝑝 𝑗 . (3)

Note: In the case where 𝑝 |𝑑1, the above modulus can be further

increased to clear away 𝑝-multiples from the denominator. In this

fashion, we create a system of modular equations (in 𝑥2) for the

first step of lifting. Moving on, we consider the next lift.

Two consecutive 𝑑1-power liftings. The effective polynomial

after the first step was (𝐿 + 𝑐 (𝑥2))𝑑1 . Let us look at the polynomials

obtained before division by 𝑝𝑑1 . It was (𝑝𝐿 + 𝑝𝑐 (𝑥2))𝑑1 + ⟨𝑝𝑑1+1⟩.
Composing this with another lift of the same kind, the polynomial

ISSAC 2023, July 24–27, 2023, Tromsø, Norway Chakrabarti and Saxena

has to be of the form (𝑝 (𝑝𝐿 + 𝑝𝑐 (𝑥2)) + 𝑝2𝑐 (𝑥2))𝑑1 + ⟨𝑝2𝑑1+1⟩. This
implies that we can directly lift 𝐿 ↦→ 𝑝2𝐿, divide by 𝑝2𝑑1 , and find

the value of 𝑐 (𝑥2) + 𝑐 (𝑥2). So, Equation 2 can be replaced by the lift

𝑝−2𝑑1 ˜𝑓 (𝑝2𝐿, 𝑥2) equalling a 𝑑1-power:

𝐿𝑑1 + 𝐿𝑑1−1 · 𝑢1 (𝑥2)/𝑝 +𝐿𝑑1−2 · 𝑢2 (𝑥2)/𝑝3 + · · · + 𝑢𝑑1 (𝑥2)/𝑝
2𝑑1−1

≡ (𝐿 + 𝑢1 (𝑥2)/𝑝𝑑1)𝑑1 mod 𝑝 . (4)

Furthermore, we can write down the univariate modular equa-

tions like Equation 3 to find the root for 𝑥2 that works in the lift.

In this way any 𝑖-length contiguous chain of 𝑑1-power liftings,

can be directly written as a system of univariate modular equa-

tions like Equation 3. It comes from the constraint that the lift

𝑝−𝑖𝑑1 ˜𝑓 (𝑝𝑖𝐿, 𝑥2) has to equal a 𝑑1-power mod 𝑝 . Next, this system

can be solved by adapting [3] to get the representative roots for the

𝑥2 variable. Of course, on substituting this in 𝑥2, we will know the

final 𝑑1-power 𝐿
′𝑑1

that the contiguous 𝑖 lifts yield.

How many consecutive 𝑑1-powers? The length of this chain

can be at most 𝑘/𝑑1. So, we go over all 𝑖 ≤ ⌊𝑘/𝑑1⌋. Iterating over

them in decreasing order, we find all the possible ways of getting

𝑑1-powers (before moving to other cases). This ensures that we do

not miss any (Z/𝑝𝑘Z)-root of 𝑓 in the search-tree.

Example 3.4. Consider the polynomial 𝑓 (𝑥1, 𝑥2) = 𝑥2
1
mod 𝑝𝑘 .

The 𝑑1-power contiguous chain will be of length 𝑘/2; and each time

𝐿 = 𝑥1. The corresponding root will be (𝑝𝑘/2 · ∗1, ∗2).

Notation for 𝑥2 representatives. A problem arises when the

representative for 𝑥2 is ∗2, i.e., 𝑥2 can take any 𝑝-adic value. Eg. if

we lift 𝑓 = 𝐿𝑑1 + 𝑝𝑑1𝑥
𝑑1+1
2

(with free 𝑥2 = ∗2) then we get 𝑔 :=

𝐿𝑑1 + 𝑥
𝑑1+1
2

. The degree of the new polynomial has now increased,

which we never want to happen in our tree branchings. In order

to prevent this, we preprocess the representative root 𝑥2 = ∗2 by
increasing the precision by one coordinate. In other words, we

consider the representative as 𝑎 + 𝑝 · ∗2, for 𝑎 ∈ {0, . . . , 𝑝 − 1}.
The following lemma shows that the effective degree never grows

in lifting steps, in our algorithm.

Lemma 3.5 (Degree invariant). The effective degree in each

transformation described for 𝑑1-forms is always 𝑑1.

Summing up. The structure discovered above gives a natural

pseudocode that we describe in Algorithm 2. The contiguous val-

mult=𝑑1 chain will have some 𝑑1-powers, say 𝑖1 many, followed by

𝑖3 many𝑑1-nonpower forms, fromwhichwe have 𝑖1+𝑖3 ≤ 𝑘/𝑑1. The
𝑑1-nonpower forms can not lead to 𝑑1-powers again, due to Lemma

3.3. Also, to get the 𝑖1 many𝑑1-powers, we need to use the univariate

root-finding of [3] and get representatives 𝑅1 for 𝑥2 (in general 𝐿2,

independent of 𝐿1). Going over each 𝑖1, 𝑖3 ≤ ⌊𝑘/𝑑1⌋, and each of the
representatives 𝑅1, we compute the intermediate representative-

roots 𝑅 (and could continue with our recursion on the local roots

with subsequent degree-reduction). This algorithm makes sure that,

in the tree, we ‘jump’ the cases of val-mult= 𝑑1 (effective degree)

quickly, and reach the degree-reduction branchings.

4 THE ALGORITHM: PROOF OF THEOREM 1.1

Using the above ideas, we prove Theorem 1.1 by giving the complete

algorithm to find roots of a bivariate polynomial modulo 𝑝𝑘 .

4.1 Main algorithm for root-finding

Root-Find() in Algorithm 1 takes as input: the polynomial 𝑓𝑗 (𝑥1, 𝑥2)
and the number 𝑝𝑘 𝑗

(𝑘 =: 𝑘0 initially). Main algorithm starts by

calling Root-Find(𝑓 (𝑥1, 𝑥2), 𝑝𝑘). If there are valid roots, it outputs
the set of roots 𝑅 ⊆ (Z/𝑝𝑘Z)2, otherwise returns 𝜙 .

Remove-𝑑1-Form() in Algorithm 2 eliminates intermediate lifts

where effective degree does not decrease. It speeds-up the search for

roots to higher precision coordinates, by jumping over contiguous

cases of roots of val-multiplicity 𝑑1. Remove-𝑑1-Form() outputs an

array of: A linear transformation which can be used to jump over

the val-multiplicity 𝑑1 roots, or a linear-representative root.

Algorithm 1 Root Finding of 𝑓𝑗 (𝑥1, 𝑥2) mod 𝑝𝑘 𝑗

1: procedure Root-Find(𝑓𝑗 (𝑥1, 𝑥2), 𝑝𝑘 𝑗
)

2: if 𝑘 𝑗 ≤ 0 OR 𝑓𝑗 (𝑥1, 𝑥2) ≡ 0 mod 𝑝𝑘 𝑗
then return (∗1, ∗2)

3: Define 𝑑1 := deg(𝑓𝑗 mod 𝑝), 𝑅 := 𝜙 .

4: if 𝑑1 = 1 then

5: return linear-representative (∗, 𝑐 (∗)) or (𝑐 (∗), ∗),
where 𝑐 (·) is given by Hensel’s Lifting.

6: for 𝑎1 ∈ {0, 𝑝 − 1} do
7: for 𝑎2 such that 𝑓𝑗 (𝑎1, 𝑎2) ≡ 0 mod 𝑝 and val-mult(a)<
𝑑1 do

8: 𝑓𝑗+1 (𝑥1, 𝑥2) := 𝑝−𝑣 𝑓𝑗 (𝑎1+𝑝𝑥1, 𝑎2+𝑝𝑥2), where 𝑣 :=

𝑣𝑝 (𝑓𝑗 (𝑎1 + 𝑝𝑥1, 𝑎2 + 𝑝𝑥2)).
9: 𝑆 := Root-Find(𝑓𝑗+1, 𝑝𝑘 𝑗−𝑣) //aka green node in Fig.1

10: 𝑅 := 𝑅 ∪ (a + 𝑝𝑆)
11: if val-multiplicity= 𝑑1 root exists then

12: 𝐷 := Remove-𝑑1-Form(𝑓𝑗 , 𝑝𝑘 𝑗) //aka red node in Fig.1

13: for (𝑟1 + 𝑝𝑖1𝐿1, 𝑟2 + 𝑝𝑖2𝐿2, 𝑖3) ∈ 𝐷 do

14: Write 𝑓𝑗 in basis {𝐿1, 𝐿2} to get
˜𝑓𝑗 (𝐿1, 𝐿2) :=

𝑓𝑗 (𝑥1, 𝑥2).
15: Lift it to

˜𝑓𝑗 (𝐿1, 𝐿2) := 𝑝−𝑖3𝑑1 · ˜𝑓𝑗 (𝑟1+𝑝𝑖1𝐿1, 𝑟2+𝑝𝑖2𝐿2).
16: if 𝑘 𝑗 − 𝑖3𝑑1 ≤ 0 then

17: The roots will be (𝑟1 + 𝑝𝑖1 · ∗1, 𝑟2 + 𝑝𝑖2 · ∗2) in
(𝐿1, 𝐿2) basis.

18: Consider the tuple (𝑟1 +𝑝𝑖1 · ∗1, 𝑟2 +𝑝𝑖2 · ∗2) and
perform the inverse linear transformation from

(𝐿1, 𝐿2) to (𝑥1, 𝑥2) on this tuple as a whole. Store
this representative root (with two independent

∗’s) in a set 𝑆 .

19: 𝑅 := 𝑅 ∪ 𝑆

20: else

21: For
˜𝑓𝑗 mod 𝑝𝑘 𝑗−𝑖3𝑑1

, find the val-mult < 𝑑1 local

roots and then recursively find all the roots; as

done in Steps 6-10. Call this set �̃�.

22: For each root (𝑟1, 𝑟2) ∈ �̃� of
˜𝑓𝑗 mod 𝑝𝑘 𝑗−𝑖3𝑑1

:

consider (𝑟1 + 𝑝𝑖1𝑟1, 𝑟2 + 𝑝𝑖2𝑟2) and perform

inverse linear transformation from (𝐿1, 𝐿2) to
(𝑥1, 𝑥2) on them. Store these final roots (mod

𝑝𝑘 𝑗
) in a set 𝑆 .

23: 𝑅 := 𝑅 ∪ 𝑆

24: return 𝑅

An effective description of the roots of bivariates mod 𝑝𝑘 ISSAC 2023, July 24–27, 2023, Tromsø, Norway

4.2 Remove-𝑑1-Form() subroutine: Handling

contiguous 𝑑1-forms (aka red nodes in Fig.1)

In Algorithm 1, we do not want the lifting to go on for several

recursion steps; since, the time complexity is exponential in the

number of steps (=tree-depth). The favorable case is when the

effective-degree reduces, e.g., when the val-multiplicity of local root

is < 𝑑1 (from Theorem 2.1). As we will see, the Remove-𝑑1-Form()

subroutine ensures inside the red nodes (whose starting local root

has val-multiplicity = 𝑑1) that the effective degree reduces when

we go down to its child. In this section we sketch the pseudocode

based on the ideas developed in Section 3.1.

Data structure returned. In order to lift the contiguous 𝑑1-

forms, we return an array of tuples of the form (𝑎1 + 𝑝𝑖1𝐿1, 𝑎2 +
𝑝𝑖2𝐿2, 𝑖3). This gives us information on jumping over the val-mult=

𝑑1 roots by first covering the 𝑑1-powers followed by 𝑑1-nonpowers.

This is done in a basis (𝐿1, 𝐿2) of variables possibly different from

(𝑥1, 𝑥2). As in Equation 4, we form equations in terms of 𝐿2 and find

the roots, such that after lifting according to these (representative)

roots, the effective polynomial will be 𝐿
𝑑1
1
. Note that in each lifting

according to the fixed part of the representative root, the linear

polynomial will change by only a constant. Therefore, {1, 𝐿1, 𝐿2}
will also span the same space as that of {1, 𝑥1, 𝑥2}. So, given a root

in (𝐿1, 𝐿2) basis, we can recover the root in (𝑥1, 𝑥2) basis uniquely.
With information from this tuple, we can do the following se-

quence of liftings in ‘one-shot’: 𝑖1-steps of 𝑑1-powers at first, fol-

lowed by 𝑖3-steps of 𝑑1-nonpower-forms.

Pseudocode. Summing up, Remove-𝑑1-Form() ‘jumps’ over the

intermediate local roots of val-multiplicity 𝑑1 so that Root-Find()

can continue to degree reducing cases (in Steps 6-10 of Algo.1).

The input is the polynomial and the prime-power, while the

output is a tuple of linear polynomials, denoting intermediate

representative-roots (over (Z/𝑝𝑘Z)2).
Considering the degree reduction and the val-multiplicity 𝑑1

cases, we get the final number of leaves in the search tree as

(fanin)depth = 𝑂 ((𝑘2𝑑𝑝)2𝑑), which gives us the following theorem.

Theorem 4.1 (Correctness of Algorithm 1). Given a polyno-

mial 𝑓 ∈ Z[𝑥1, 𝑥2] of degree 𝑑 , a prime 𝑝 and an integer 𝑘 . Algorithm

1 using Algorithm 2 as a subroutine, correctly returns all the roots

a ∈ (Z/𝑝𝑘Z)2 of 𝑓 mod 𝑝𝑘 , in deterministic poly((𝑘 +𝑑 +𝑝)𝑑) time.

5 COMPUTING 𝑃-ADIC ROOTS: PROOF OF

COROLLARY 1.2

In this subsection, we give a bound for 𝑘0 in terms of the degree 𝑑

and the maximum absolute value𝑀 of the coefficients, such that

finding a root modulo 𝑝𝑘0 would imply finding all representative

(𝑝-adic) Z𝑝 -roots of 𝑓 . Let 𝑓 (𝑥1, 𝑥2) =:
∏𝑟

𝑖=0 𝑔𝑖 (𝑥1, 𝑥2)𝑒𝑖 , where
𝑔𝑖 (𝑥1, 𝑥2)’s are coprime over Z𝑝 . Even if 𝑓 has some square-full

factors (some 𝑒𝑖 ’s are ≥ 2), we can eliminate them efficiently, by

computing its gcd with the first-order derivatives. This will result

in the new polynomial being of the form

∏𝑟
𝑖=0 𝑔𝑖 (𝑥1, 𝑥2) , which

we will call the radical polynomial rad(𝑓). The polynomial 𝑓 and

its radical rad(𝑓) have the same set of roots in Z𝑝 . Next, we bound
the absolute-value of the coefficients of the radical.

Algorithm 2 Finding intermediate val-mult=𝑑1 roots in one-shot

1: procedure Remove-𝑑1-Form(𝑓 (𝑥1, 𝑥2), 𝑝𝑘)
2: Define 𝑑1 := deg(𝑓 mod 𝑝), 𝑅 := 𝜙 .

3: for 𝑖1 ∈ {⌈𝑘/𝑑1⌉, . . . , 0} do
4: 𝑅1 := 𝜙

5: Find the linear polynomial 𝐿 such that 𝑓 ≡ 𝐿𝑑1 mod 𝑝 .

If 𝐿 is 𝑥2-multiple, then set 𝐿2 := 𝑥1, otherwise set

𝐿2 := 𝑥2.

6: Compute the (basis-change) polynomial
˜𝑓 such that

˜𝑓 (𝐿, 𝐿2) = 𝑓 (𝑥1, 𝑥2).
7: Write

˜𝑓 as in Equation 4 and form (univariate, modular)

equations like Equation 3 in terms of polynomials in 𝐿2
such that 𝑖1-many contiguous 𝑑1-powers exist (Section

3.1).

8: Find the representative-roots, inZ/𝑝𝑖1𝑑1Z, of the system
of equations formed in terms of 𝐿2 (as in the previous

step) using [3] and store them into 𝑅1.

9: for each representative-root 𝑟2 + 𝑝𝑖2∗ ∈ 𝑅1 do

10: Find linear polynomial 𝐿1 obtained in the end, by

substituting the representative in 𝐿2, using the

method of Section 3.1. Note: 𝑖2 ≥ 1 and 𝐿1 has to be

of the form 𝐿 + 𝑐 for some integer 𝑐 .

11: Write
˜𝑓 (𝐿, 𝐿2) in basis 𝐿1, 𝐿2 given by 𝑔(𝐿1, 𝐿2) :=

˜𝑓 (𝐿, 𝐿2).
12: Lift 𝑔(𝐿1, 𝐿2) := 𝑝−𝑖1𝑑1 · 𝑔(𝑝𝑖1𝐿1 , 𝑟2 + 𝑝𝑖2𝐿2)
13: for 𝑖3 ∈ { ⌈𝑘/𝑑1⌉ − 𝑖1, . . . , 0} do
14: if ∃r′ ∈ (Z/𝑝𝑖3Z)2 s.t. 𝑔 is a 𝑑1-nonpower-form

consecutively 𝑖3-times then

15: In each precision r′ is unique; so it can be

searched easily in the space F2𝑝 .

16: 𝑅0 := (𝑝𝑖1𝑟 ′
1
+ 𝑝𝑖1+𝑖3𝐿1 , 𝑟2 + 𝑝𝑖2𝑟 ′

2
+

𝑝𝑖2+𝑖3𝐿2 , 𝑖1 + 𝑖3)
17: if 𝑅0 ∉ 𝑅 then

18: 𝑅 := 𝑅 ∪ {𝑅0}
19: else

20: break

21: return R

Lemma 5.1 (Bound for 𝑝-adic radical). If a polynomial 𝑓 of

degree 𝑑 has the absolute-value of its coefficients bounded by𝑀 , then

its radical has its coefficients bounded by𝑀𝑂 (𝑑)
.

Therefore, without loss of generality we consider 𝑓 (𝑥1, 𝑥2) to
be square-free having absolute value of coefficients ≤ 𝑀𝑂 (𝑑)

, and

continue with our algorithm of finding roots in Z𝑝 .

Representative roots in Z/𝑝𝑘Z vs roots in Z𝑝 . The return

value of the algorithm, in the base-case, is either the representative

root (∗1, ∗2) when the exponent of 𝑝 required gets achieved (Step 2

of Algorithm 1), or linear-representative root (∗, 𝑐 (∗)) (Steps 4-5 of
Algorithm 1).

For large enough 𝑘 , i.e., 𝑘 > 𝑘0, we want to show that if a

representative root (∗1, ∗2) is returned, then the fixed part of the

root is already a Z𝑝 -root. In the other case, for linear-representative

ISSAC 2023, July 24–27, 2023, Tromsø, Norway Chakrabarti and Saxena

roots, we can simply use Hensel lifting to lift to Z𝑝 -roots (or, to as

much precision as we wish).

Discriminant. Let 𝑓 ′ := 𝜕𝑥2 𝑓 (𝑥1, 𝑥2) be the first-order deriv-
ative of 𝑓 . The resultant [16, Chapter 3] of 𝑓 and 𝑓 ′ w.r.t. 𝑥2 is

denoted 𝑅(𝑥1) := Res𝑥2 (𝑓 (𝑥1, 𝑥2), 𝑓 ′ (𝑥1, 𝑥2)), which is also one of

the discriminants of 𝑓 . 𝑅(𝑥1) is not identically zero in Z𝑝 , as this
would imply: 𝑓 and its derivative have a common factor; contra-

dicting the radical condition.

The roots of 𝑅(𝑥1) given by 𝑥1 satisfy the condition that the

univariate polynomial 𝑓 (𝑥1, 𝑥2) is square-full. Furthermore, given

𝑥1, we can easily find the values of 𝑥2 (𝑑-many), as it becomes the

univariate root-finding problem over Z𝑝 (solved in [3, 21, 23]).

Bound to distinguishZ𝑝 roots.Themain idea is to find a bound

for the exponent of 𝑝 such that each root returned using root-finding

is either a linear-representative root, or a unique lift of this root is a

Z𝑝 root. A similar bound was achieved for univariate polynomials

by [23]. However, the complications of lifting multivariate roots

did not arise there, as every 𝑝-adic root corresponded to a factor.

Lemma 5.2 (Discriminant of radical). Let 𝑓 ∈ Z[𝑥1, 𝑥2] be of
degree 𝑑 whose coefficients have absolute value bounded above by𝑀 .

Let its radical polynomial be 𝑔 := rad(𝑓). The Z𝑝 -roots of 𝑅(𝑥1) :=
Res𝑥2 (𝑔,𝑔′) are in one-one correspondence to the representative roots

of 𝑅(𝑥1) mod 𝑝𝑘 , for any 𝑘 ≥ 𝑘1 := Θ(𝑑6 log𝑀).

Z𝑝 -roots. Consider 𝑔 = rad(𝑓) and 𝑘1 = Θ(𝑑6 log𝑀). Define
𝑔2 (𝑥2) := Res𝑥1 (𝑔(𝑥1, 𝑥2) , 𝑅(𝑥1)). Intuitively, roots 𝑥2 of 𝑔2 come

from the roots 𝑥1 of 𝑅. So, again applying [23, Theorem 20] on

this univariate polynomial 𝑔2, it suffices to compute its roots mod

𝑝𝑘2 , to compute its distinct 𝑝-adic roots; where 𝑘2 is asymptotically

log𝑝 (𝑝𝑘1 ·2𝑑
2 ·𝑑) = 𝑂 (𝑑9 log𝑀).

Using the value of 𝑘2 as above, we find roots of 𝑔(𝑥1, 𝑥2) from
Root-Find(𝑔, 𝑝𝑘2). Let (𝑎1, 𝑎2) be the fixed-part of a root thus ob-
tained. If 𝑅(𝑎1) ≡ 0 mod 𝑝𝑘2 , then the above argument, that defined

𝑘2, ensures that (𝑎1, 𝑎2) does lift to a Z𝑝 -root of 𝑅, 𝑔2, 𝑔 and 𝑓 (in

this case uniquely).

Non-root of discriminant. Thus, the case left is that 𝑅(𝑎1) ≠
0 mod 𝑝𝑘2 . Consider the univariate polynomial 𝑔(𝑎1, 𝑥2). We know

that its Z𝑝 -roots are different mod 𝑝𝑘2 and at most 𝑑 many; one of

which is 𝑎2. Consider 𝑔1 (𝑥2) := 𝑝−𝑣 · 𝑔(𝑎1 , 𝑎2 + 𝑥2), where 𝑣 ≥ 0

is the 𝑝-valuation of 𝑔(𝑎1 , 𝑎2 + 𝑥2) as a polynomial over Z𝑝 . Note

that 𝑥2 divides 𝑔1, but 𝑥
2

2
does not divide 𝑔1 (mod 𝑝). Thus, 0 is a

simple-root of 𝑔1 and we can potentially Hensel lift it to 𝑝-adics.

To implement this formally, we need to increase the precision

so that the extra 𝑝-factors can be removed from 𝑔. Note that if we

assume 𝑝 ∤ 𝑔(𝑎1, 𝑥2) then 𝑣 ≤ 𝑘2 + (𝑘2 − 1) (𝑑 − 1) < 𝑑 ·𝑘2. Fix 𝑘0 :=
𝑑 ·𝑘2 = Θ(𝑑10 log𝑀). Now consider 𝑔(x) := 𝑝−𝑣 ·𝑔(𝑎1+𝑝𝑘2𝑥1 , 𝑎2+
𝑝𝑘2𝑥2) mod 𝑝𝑘0 . By the argument above, 𝑔 mod 𝑝 is linear in 𝑥2 (it

is easier to see by substituting 𝑥1 = 0). Thus, an extension of this

root has to end up in some leaf of Root-Find(𝑔, 𝑝𝑘0) algorithm as

say (𝑎′
1
, 𝑎′

2
); which will Hensel lift to 𝑝-adic integral root(s) due to

the linear 𝑥2 term in the lift.

Since the set of 𝑝-adic roots for 𝑓 and 𝑔 is the same, we could as

well run Root-Find(𝑓 , 𝑝𝑘0). This proves the following lemma.

Lemma 5.3 (𝑝𝑘0 is 𝑝-adic). Let 𝑓 ∈ Z[𝑥1, 𝑥2] be of degree 𝑑 and

having absolute-value of coefficients bounded by 𝑀 . Each root rep-

resented in the leaves of the tree of Root-Find(𝑓 , 𝑝𝑘0), for 𝑘0 :=

Θ(𝑑10 log𝑀), lifts to a Z𝑝 -root of 𝑓 (𝑥1, 𝑥2).

We further need the condition that the structure of this tree

does not change with 𝑘 for 𝑘 ≥ 𝑘0. In order to show that, we

prove the following lemma. Denote 𝑅1 (𝑥1) := Res𝑥2 (𝑔, 𝜕𝑥2 (𝑔)) and
𝑅2 (𝑥2) := Res𝑥1 (𝑔, 𝜕𝑥1 (𝑔))

Lemma 5.4 (Fix 𝑝-adic tree). If a leaf of the tree given by Lemma

5.3 returns a representative root with the fixed part (𝑎1, 𝑎2), that is not
linear-representative, then 𝑅1 (𝑎1) = 𝑅2 (𝑎2) = 0 mod 𝑝𝑘 . Moreover,

(𝑎1, 𝑎2) lifts to a unique root of 𝑓 over Z𝑝 ; and their number does not

change as 𝑘 grows beyond 𝑘0.

Also, the tree (Fig.1) in our algorithm does not change, and remains

isomorphic, for 𝑘 ≥ 𝑘0; except the leaf with the root 0.

The following examples should help illustrate the 𝑝-adic machin-

ery more clearly.

Example 5.5. Consider the polynomial 𝑓 = (𝑥1 − 1) (𝑥2 − 2) mod

𝑝𝑘 . The first step of our algorithm has to be 𝑥1 = 1 or 𝑥2 = 2.

Considering the root a := (1, 3), the polynomial after lifting be-

comes 𝑥1 (1 + 𝑝𝑥2), which is an (effective) linear form; thus, a linear-

representative root will be returned, which has 𝑥2 as the free variable

while 𝑥1 will stay fixed to 1. This gives the leaf r := (1+𝑝𝜇 (∗), 3+𝑝∗),
and a computable Z𝑝 -function 𝜇 (·), which allows the 𝑝-adic lift of a.
In this case, 𝜇 = 0.

Example 5.6. Now, consider 𝑓 (𝑥1, 𝑥2) = (𝑥1−𝑝𝑥2) (𝑥1−2𝑝𝑥2) mod

𝑝𝑘 . Lifting the root a := (0, 1) gives us (𝑥1 − 1− 𝑝𝑥2) (𝑥1 − 2− 2𝑝𝑥2),
which is not yet effective linear. Choosing the next lifting-step around

the root (1, 0), the polynomial after lifting becomes (𝑥1 − 𝑝𝑥2) (−1 +
𝑝𝑥1 − 2𝑝2𝑥2), which is an (effective) linear polynomial; thus, a linear-

representative root will be returned, corresponding to (𝑥1−𝑝𝑥2), which
has 𝑥2 as the free variable while 𝑥1 depends on it. This gives the leaf

r := (𝑝 +𝑝3𝜇 (∗), 1+𝑝2∗), and a computable Z𝑝 -function 𝜇 (·), which
allows the 𝑝-adic lift of a. In this case, 𝜇 (𝑤) := 𝑤 .

Blowing up the root 0. There may be Z𝑝 -roots which can not

be ‘noticed’ modulo 𝑝𝑘0 , because they are indistinguishable from 0.
This is seen in the following example.

Example 5.7. Consider the polynomial 𝑥3
1
+ 𝑥3

2
mod 𝑝𝑘 , for 𝑝 > 3

and 3|𝑘 . Some of its linear-representative roots are (𝑝 𝑗 +𝑝 𝑗+1∗ ,−𝑝 𝑗 +
𝑝 𝑗+1𝜇 (∗)), for any 𝑗 < 𝑘/3 and 𝜇 (𝑤) := −𝑤 . Also, (𝑝𝑘/3∗1 , 𝑝𝑘/3∗2)
is a non linear-representative root. It can lift to the 𝑝-adic root 0, but
it can also lift to (𝑝𝑘 ,−𝑝𝑘); which our algorithm could not explore

due to the precision being only 𝑝𝑘 .

The following theorem completes the connection, of Algorithm

1, with all 𝑝-adic roots of 𝑓 . Fundamentally, it scales up the roots by

𝑝𝑣-multiple, whenever possible, and creates a new data-structure

for representatives in the leaves of the fixed tree modulo mod 𝑝𝑘0 ,

in Fig.1. It can also be seen as a way of further blowing-up the leaf

of the fixed tree that gives the 0 root.

Theorem 5.8 (High val 𝑝-adic roots). We can efficiently ‘ex-

pand’ the leaves, of the search tree, as follows:

(1) Define a set of representative-roots H𝑣 , for 𝑣 ≥ 𝑘0, s.t. for each

An effective description of the roots of bivariates mod 𝑝𝑘 ISSAC 2023, July 24–27, 2023, Tromsø, Norway

root a ∈ H𝑣 , 𝑝
𝑣a lifts to a 𝑝-adic root of 𝑓 .

(2) We can compute the fixed tree forH𝑘0 efficiently by Algorithm

1. The other sets H𝑣 , for 𝑣 > 𝑘0, lift from the same representatives as

in the leaves ofH𝑘0 ; so we do not recompute them.

Let (𝑟 ′
1
, 𝑟 ′
2
) be a 𝑝-adic root of 𝑓 . Then, ∃𝑣 ≥ 0 , ∃ root a ∈ H𝑣

lifting to a′ , for which (𝑟 ′
1
, 𝑟 ′
2
) = 𝑝𝑣a′. In this sense, our fixed finite

tree covers all (∞-many) 𝑝-adic roots of 𝑓 .

Lemmas 5.3-5.4 and Theorem 5.8 describe the 𝑝-adic nature of

the tree and the representative roots, after the threshold bound of

𝑘0. This finishes the proof of Corollary 1.2.

6 APPLICATION: IGUSA’S LOCAL ZETA

FUNCTION (COROLLARY 1.3)

The essence of computing the Igusa’s local zeta function is in finding

all the roots modulo 𝑝𝑘0 for a large enough threshold 𝑘0, such that

representative roots in Z/𝑝𝑘0Z are in one-one correspondence to

those roots in Z/𝑝𝑘Z for any 𝑘 > 𝑘0. This turns out to be relatively

easy in univariates (see [23]), however, for bivariates, a new kind

of root, the blowing up of 0, comes into play.

Choosing 𝑘0 = Ω(𝑑10 log𝑀), as shown in Lemma 5.3, we com-

pute the number of roots modulo 𝑝𝑘 for 𝑘 ≤ 𝑘0, using Algorithm

1. This can be performed in poly(log𝑀, 𝑝) time. For 𝑘 > 𝑘0, we

compute the roots in the following ways. The roots can be either

a non linear-representative root, a linear-representative root, or

a blow-up root. For non linear-representative roots, if the roots

modulo 𝑝𝑘0 is of the form (𝑟1 + 𝑝ℓ1∗1, 𝑟2 + 𝑝ℓ2∗2), then the number

of roots modulo 𝑝𝑘 due to this will be 𝑝𝑘−ℓ1 .𝑝𝑘−ℓ2 . For linear repre-
sentative roots of the form (𝑟1 + 𝑝ℓ1∗, 𝑟2 + 𝑝ℓ2𝜇 (∗)), it can be shown

exploiting the structure of the polynomial, that the number of roots

modulo 𝑝𝑘 is 𝑝ℓ (𝑘) , where ℓ (𝑘) is a linear polynomial in 𝑘 . Both

these yield geometric progressions that can be summed up for values

of 𝑘 ranging from one to infinity. Finally, for the roots that blow up,

we can precomputeH0 from Theorem 5.8, which is independent of

𝑘 , and multiply them by (𝑘 − 𝑘0) to give an arithmetic-geometric

progression.

Thus, we compute 𝑁𝑘 (𝑓) as a closed-form expression in 𝑘 , such

that

∑∞
𝑘=𝑘0

𝑁𝑘 (𝑓) (𝑡/𝑝2)𝑘 converges in Q(𝑡). This completes the

efficient computation of Igusa’s local zeta function as a rational

function in 𝑡 = 𝑝−𝑠 .

7 CONCLUSION AND FUTUREWORK

The aforementioned techniques of root-finding of bivariates modulo

𝑝𝑘 naturally extend to 𝑛-variates with heavier complexity. The idea

remains the same of lifting x to a + 𝑝x, and clearing out the extra

powers of 𝑝 , where a is a root modulo 𝑝 . The algorithm works

inductively, where root-finding of 𝑛-variates reduces to solving

a system of polynomial equations over (𝑛 − 1) variables. Using
some algebraic manipulations, and performing change of basis of

variables while lifting, this yields an algorithm for finding a root of

𝑛-variate polynomials modulo 𝑝𝑘 in time𝑂 ((𝑘+𝑑+𝑝) (2𝑑 (𝑛−1))𝑛−1).
A more elaborate explanation of the ideas involved can be found in

the full version of this paper on our homepage [8, 10].

Similarly, the Z𝑝 roots of 𝑛-variates can be efficiently presented,

which in turn leads to computing the Igusa’s local zeta function.

The power series expression obtained will again converge, thereby

proving its rationality.

We leave the question of root-finding, for constant 𝑑 and 𝑛, in

polylog(𝑝)-time open. Some progress has been made in [9] using

deeper algebraic-geometric methods.

ACKNOWLEDGMENTS

We thank Ashish Dwivedi for useful discussions on many related

problems in this area. We thank the anonymous reviewers whose

feedback improved our presentation. N.S. thanks the funding sup-

port from DST-SERB (CRG/2020/000045) and N.Rama Rao Chair.

REFERENCES

[1] Elwyn R Berlekamp. 1967. Factoring polynomials over finite fields. Bell System

Technical Journal 46, 8 (1967), 1853–1859.

[2] Elwyn R Berlekamp. 1970. Factoring polynomials over large finite fields. Mathe-

matics of computation 24, 111 (1970), 713–735.

[3] Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. 2013. Polynomial

root finding over local rings and application to error correcting codes. Applicable

Algebra in Engineering, Communication and Computing 24, 6 (2013), 413–443.

[4] BJ Birch and KMcCann. 1967. A Criterion for the p-adic Solubility of Diophantine

Equations. The Quarterly Journal of Mathematics 18, 1 (1967), 59–63.

[5] Andreas Björklund, Petteri Kaski, and Ryan Williams. 2019. Solving systems of

polynomial equations over GF (2) by a parity-counting self-reduction. In 46th

International Colloquium on Automata, Languages, and Programming (ICALP),

2019, Patras, Greece (LIPIcs, Vol. 132). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 26:1–26:13.

[6] David G. Cantor and Daniel M. Gordon. 2000. Factoring Polynominals over

p-Adic Fields. In Algorithmic Number Theory, 4th International Symposium, ANTS-

IV, Leiden, Netherlands (Lecture Notes in Computer Science, Vol. 1838). Springer,

185–208.

[7] David G Cantor and Hans Zassenhaus. 1981. A new algorithm for factoring

polynomials over finite fields. Math. Comp. 36, 154 (1981), 587–592.

[8] Sayak Chakrabarti. 2022. Multivariate polynomials modulo prime powers: their

roots, zeta-function and applications. Master’s thesis. CSE, IIT Kanpur, India.

[9] Sayak Chakrabarti, Ashish Dwivedi, and Nitin Saxena. 2022. Solving polynomial

systems over non-fields and applications tomodular polynomial factoring. Technical

Report. CSE, IIT Kanpur.

[10] Sayak Chakrabarti and Nitin Saxena. 2022. An effective description of the roots of

multivariates mod 𝑝𝑘 and the related Igusa’s local zeta function. Technical Report.

CSE, IIT Kanpur.

[11] Howard Cheng and George Labahn. 2001. Computing all factorizations in𝑍𝑛 [𝑥].
In Proceedings of the 2001 International Symposium on Symbolic and Algebraic

Computation (ISSAC), Ontario, Canada. ACM, 64–71.

[12] Qi Cheng, Shuhong Gao, J Maurice Rojas, and Daqing Wan. 2019. Counting roots

for polynomials modulo prime powers. The Open Book Series 2, 1 (2019), 191–205.

[13] Qi Cheng, J Maurice Rojas, and Daqing Wan. 2020. Computing zeta functions

of large polynomial systems over finite fields. arXiv preprint arXiv:2007.13214

(2020), 1–10.

[14] Alexander Leonidovich Chistov. 1987. Efficient factorization of polynomials over

local fields. Doklady Akademii Nauk 293, 5 (1987), 1073–1077.

[15] Alexander L Chistov. 2021. An Effective Algorithm for Deciding Solvability of

a System of Polynomial Equations over 𝑝-adic Integers. Algebra i Analiz 33, 6

(2021), 162–196.

[16] David Cox, John Little, and Donal O’Shea. 2013. Ideals, varieties, and algorithms:

an introduction to computational algebraic geometry and commutative algebra.

Springer Science & Business Media.

[17] Bruce Dearden and Jerry Metzger. 1997. Roots of polynomials modulo prime

powers. European Journal of Combinatorics 18, 6 (1997), 601–606.

[18] Jan Denef. 1984. The rationality of the Poincaré series associated to the p-adic

points on a variety. Invent. math 77, 1 (1984), 1–23.

[19] Jan Denef and Kathleen Hoornaert. 2001. Newton polyhedra and Igusa’s local

zeta function. Journal of number Theory 89, 1 (2001), 31–64.

[20] Ashish Dwivedi. 2023. Polynomials over composites: Compact root representation

via ideals and algorithmic consequences. Ph. D. Dissertation. CSE, IIT Kanpur,

India.

[21] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. 2019. Counting Basic-Irreducible

Factors Mod 𝑝𝑘 in Deterministic Poly-Time and 𝑝-Adic Applications. In Pro-

ceedings of 34th Computational Complexity Conference (CCC 2019). Springer,

15:1–15:29.

[22] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. 2021. Efficiently factoring

polynomials modulo 𝑝4
. Journal of Symbolic Computation 104 (2021), 805–823.

[23] Ashish Dwivedi and Nitin Saxena. 2020. Computing Igusa’s local zeta function

of univariates in deterministic polynomial-time. Open Book Series 4, 1 (2020),

197–214.

https://www.cse.iitk.ac.in/users/nitin/theses/chakrabarti-2022.pdf
https://www.cse.iitk.ac.in/users/nitin/theses/chakrabarti-2022.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/HNpk.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/HNpk.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/IZF-n-var.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/IZF-n-var.pdf

ISSAC 2023, July 24–27, 2023, Tromsø, Norway Chakrabarti and Saxena

[24] Andrzej Ehrenfeucht and Marek Karpinski. 1990. The computational complexity

of (xor, and)-counting problems. International Computer Science Inst.

[25] Pierrick Gaudry and Robert Harley. 2000. Counting points on hyperelliptic

curves over finite fields. In International Algorithmic Number Theory Symposium.

Springer, 313–332.

[26] Parikshit Gopalan, Venkatesan Guruswami, and Richard J Lipton. 2008. Algo-

rithms for modular counting of roots of multivariate polynomials. Algorithmica

50, 4 (2008), 479–496.

[27] Jordi Guàrdia, Enric Nart, and Sebastian Pauli. 2012. Single-factor lifting and

factorization of polynomials over local fields. Journal of Symbolic Computation

47, 11 (2012), 1318–1346.

[28] Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal. 2021. On Algorithms to

Find p-ordering. In Conference on Algorithms and Discrete Applied Mathematics.

Springer, 333–345.

[29] David Harvey. 2015. Computing zeta functions of arithmetic schemes. Proceedings

of the London Mathematical Society 111, 6 (2015), 1379–1401.

[30] Kurt Hensel. 1918. Eine neue Theorie der algebraischen Zahlen. Mathematische

Zeitschrift 2, 3 (1918), 433–452.

[31] M-D Huang and Y-C Wong. 1999. Solvability of systems of polynomial congru-

ences modulo a large prime. computational complexity 8, 3 (1999), 227–257.

[32] Jun-ichi Igusa. 1974. Complex powers and asymptotic expansions. I. Functions

of certain types. Journal für die reine und angewandte Mathematik 0268_0269

(1974), 110–130. http://eudml.org/doc/151455

[33] Jun-Ichi Igusa. 1977. Some observations on higher degree characters. American

Journal of Mathematics 99, 2 (1977), 393–417.

[34] Jun-ichi Igusa. 2007. An introduction to the theory of local zeta functions. Vol. 14.

American Mathematical Soc.

[35] Erich Kaltofen. 1982. A polynomial-time reduction from bivariate to univariate

integral polynomial factorization. In 23rd Annual Symposium on Foundations of

Computer Science (FOCS 1982). IEEE, 57–64.

[36] Erich Kaltofen. 1985. Polynomial-time reductions from multivariate to bi-and

univariate integral polynomial factorization. SIAM J. Comput. 14, 2 (1985), 469–

489.

[37] Neeraj Kayal. 2005. Solvability of a system of bivariate polynomial equations

over a finite field. In International Colloquium on Automata, Languages, and

Programming. Springer, 551–562.

[38] Kiran S Kedlaya. 2001. Counting points on hyperelliptic curves using Monsky-

Washnitzer cohomology. Journal of the Ramanujan Mathematical Society 16, 4

(2001), 323–338.

[39] Kiran S Kedlaya. 2004. Computing zeta functions via p-adic cohomology. In

International Algorithmic Number Theory Symposium. Springer, 1–17.

[40] Kiran S Kedlaya and Christopher Umans. 2011. Fast polynomial factorization

and modular composition. SIAM J. Comput. 40, 6 (2011), 1767–1802.

[41] Leann Kopp, Natalie Randall, Joseph Rojas, and Yuyu Zhu. 2020. Randomized

polynomial-time root counting in prime power rings. Math. Comp. 89, 321 (2020),

373–385.

[42] Alan GB Lauder. 2006. A recursive method for computing zeta functions of

varieties. LMS Journal of Computation and Mathematics 9 (2006), 222–269.

[43] Frank Lehmann,MarkusMaurer, VolkerMüller, and Victor Shoup. 1994. Counting

the number of points on elliptic curves over finite fields of characteristic greater

than three. In International Algorithmic Number Theory Symposium. Springer,

60–70.

[44] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, Ryan Williams, and

Huacheng Yu. 2017. Beating brute force for systems of polynomial equations over

finite fields. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium

on Discrete Algorithms. SIAM, 2190–2202.

[45] Kazuto Matsuo, Jinhui Chao, and Shigeo Tsujii. 2002. An improved baby step

giant step algorithm for point counting of hyperelliptic curves over finite fields.

In International Algorithmic Number Theory Symposium. Springer, 461–474.

[46] Davesh Maulik. 2001. Root sets of polynomials modulo prime powers. Journal of

Combinatorial Theory, Series A 93, 1 (2001), 125–140.

[47] Alfred J Menezes, Scott A Vanstone, and Robert J Zuccherato. 1993. Counting

points on elliptic curves over F
2
𝑚 . Mathematics of computation 60, 201 (1993),

407–420.

[48] Vincent Neiger, Johan Rosenkilde, and Éric Schost. 2017. Fast computation of the

roots of polynomials over the ring of power series. In Proceedings of the 2017 ACM

on International Symposium on Symbolic and Algebraic Computation. 349–356.

[49] Peter N Panayi. 1995. Computation of Leopoldt’s P-adic regulator. Ph. D. Disserta-

tion. University of East Anglia, Norwich, England.

[50] Caleb Robelle, J Maurice Rojas, and Yuyu Zhu. 2021. Sub-Linear Point Count-

ing for Variable Separated Curves over Prime Power Rings. arXiv preprint

arXiv:2102.01626 (2021), 18.

[51] Lajos Rónyai. 1987. Factoring polynomials over finite fields. In 28th Annual

Symposium on Foundations of Computer Science (FOCS 1987). IEEE, 132–137.

[52] Ana Sălăgean. 2005. Factoring polynomials over Z4 and over certain Galois rings.

Finite fields and their applications 11, 1 (2005), 56–70.

[53] Takakazu Satoh. 2002. On p-adic point counting algorithms for elliptic curves over

finite fields. In International Algorithmic Number Theory Symposium. Springer,

43–66.

[54] René Schoof. 1995. Counting points on elliptic curves over finite fields. Journal

de théorie des nombres de Bordeaux 7, 1 (1995), 219–254.

[55] Carlo Sircana. 2017. Factorization of polynomials over Z/(𝑝𝑛) . In Proceedings of

the 2017 ACM on International Symposium on Symbolic and Algebraic Computation.

405–412.

[56] Hans Zassenhaus. 1969. On hensel factorization, I. Journal of Number Theory 1,

3 (1969), 291–311.

[57] Hans Zassenhaus. 1978. A remark on the Hensel factorization method. Math.

Comp. 32, 141 (1978), 287–292.

[58] Yuyu Zhu. 2020. Trees, point counting beyond fields, and root separation. Ph. D.

Dissertation. Texas A&M University, USA.

[59] WA Zuniga-Galindo. 2003. Computing Igusa’s local zeta functions of univariate

polynomials, and linear feedback shift registers. Journal of Integer Sequences 6

(2003), 36.

http://eudml.org/doc/151455

	Abstract
	1 Introduction
	1.1 Previous work
	1.2 Our results: Find roots in , , and compute the Poincaré series
	1.3 Difficulty of the problem
	1.4 Proof overview: Algorithms 1 & 2

	2 Evolution of effective degree during lifting steps
	3 Structure of via rank of local roots of val-mult=
	3.1 Structure of consecutive -powers.

	4 The algorithm: Proof of Theorem 1.1
	4.1 Main algorithm for root-finding
	4.2 subroutine: Handling contiguous d1-forms (aka red nodes in Fig.1)

	5 Computing -adic roots: Proof of Corollary 1.2
	6 Application: Igusa's local zeta function (Corollary 1.3)
	7 Conclusion and future work
	Acknowledgments
	References

